A New Class of S-Bridged Pentanuclear Complexes with a Triple Helical Chirality. Crystal Structure of $[\{Rh^{III}(aet)_3\}_2(Hg^{II}Cl_2)_3]$ (aet = 2-aminoethanethiolate)

Ken-ichi OKAMOTO, Takumi KONNO,* Yuichi KAGEYAMA, and Jinsai HIDAKA

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305

The reactions of fac(S)-[Rh(aet)₃] (aet = 2-aminoethanethiolate) with HgX₂ (X = Cl or NO₃) gave twisted-ellipsoid-type S-bridged pentanuclear complexes with a triple helical chirality, in which two Δ - or Λ -fac(S)-[Rh(aet)₃] subunits are linked by three mercury atoms. The crystal structure of [{Rh(aet)₃}₂(HgCl₂)₃] was determined by X-ray crystallography.

As a part of systematic investigations of S-bridged polynuclear complexes with 2-aminoethanethiolate (aet) or L-cysteinate (L-cys), $^{1-3}$) we have recently reported that the reactions of fac(S)-[M(aet)₃] (M = Co(III), Rh(III), or Ir(III)) with M' = Zn²⁺ or Cd²⁺ in water produce novel cage-type S-bridged polynuclear complexes with a "defective" [M'₃O]⁴⁺ or a "complete" [M'₄O]⁶⁺ core, [{M(aet)₃}M'_{3 or 4}O]^{4+ or 6+}, which are commonly spontaneously resolved for M' = Zn²⁺.²⁾ These results are in striking contrast to the fact that the reactions with a metal ion M" = Fe³⁺, Co²⁺, or Ni²⁺, which prefers to take an octahedral geometry, give the well-known linear-type S-bridged trinuclear complexes [M"{M(aet or L-cys-N,S)₃}₂]^{n+ or n-}.^{1,4)} Here we report that the reactions of fac(S)-[Rh(aet)₃] with HgX₂ (X = Cl or NO₃), which is geometrically analogous to ZnX₂ and CdX₂, result in the formation of a new class of S-bridged pentanuclear complexes showing a triple helical chirality.

To a yellow suspension of fac(S)-[Rh(aet)₃] (0.10 g) in 15 cm³ of water was added HgCl₂ (0.14 g) in 65 cm³ of water. The mixture was stirred at room temperature for 30 min, whereupon the suspension became a clear pale yellow solution. Slow evaporation of this reaction solution gave pale yellow crystals (1) in 37% yield.⁵⁾ The plasma emission spectral analysis indicated that 1 contains Rh and Hg in a ratio of 2:3. X-Ray structural analysis of 1 revealed the presence of a discrete complex molecule and water ones.⁶⁾ The entire complex molecule has a crystallographically imposed C_2 symmetry, the Hg1 atom lying on the two-fold axis

(Fig. 1). The entire complex molecule consists of two approximately octahedral fac(S)-[Rh(aet)₃] subunits and three HgCl₂ moieties. The two fac(S)-[Rh(aet)₃] subunits are linked by the three Hg atoms to give a twistedellipsoid-type S-bridged pentanuclear structure, in which five metals form an approximately regular trigonal-bipyramid (average Rh-Hg = 3.970(1) Å, Hg-Hg = 3.854(1) Å, Hg-Rh-Hg $= 58.08 (2)^{\circ}$, Hg-Hg-Rh $= 60.96 (2)^{\circ}$). Each Hg atom is situated in a highly distorted tetrahedral environment coordinated by two thiolato S atoms from the two terminal fac(S)-[Rh(aet)₃] subunits and two Cl atoms (average $S-Hg-S = 147.6 (1)^{\circ} \text{ and } Cl-Hg-Cl = 88.8$ (4)°). The Hg-S bonds (average 2.443 (4) Å) are much shorter than those in tetrahedral $[Hg(thiolato-S)_4]^{2-}$ (2.52 - 2.55 Å) $^{7a,b)}$ and are close to the values observed for Hg-S bonds in digonal [Hg(thiolato-S)₂] (2.32 - 2.35 Å).^{7a,c)} On the other hand, the Hg-Cl bonds (average 2.648 (5) Å) are distinctly longer than those found in tetrahedral [HgCl₄]²- (2.39 -2.53 Å).^{7a)} Accordingly, it is assumed that in 1 the Cl atoms only weakly coordinate to Hg(II) because of the tendency for Hg(II) to maximize bonding to the S atoms.

The space group of $I4_1/a$ and Z = 86 indicates the selective formation of racemic

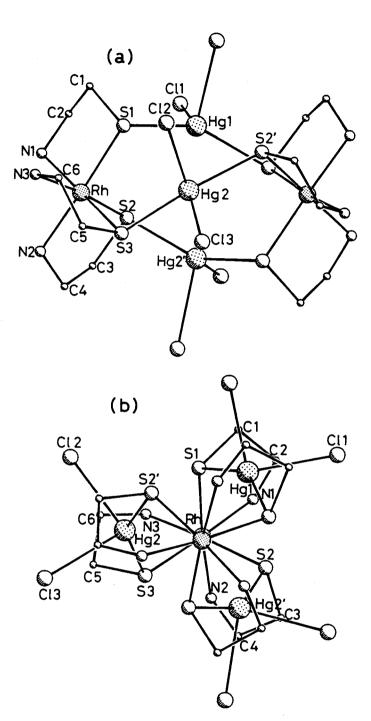


Fig. 1. Perspective view of the complex molecule 1 with the atomic labeling scheme; (a) view down close to a C_2 axis, (b) view down close to a C_3 axis.

compound for 1, having the $\Delta\Delta$ or $\Lambda\Lambda$ configuration for the two fac(S)-[Rh(aet)₃] subunits (Fig. 1). All the six bridging sulfur atoms are fixed to the S configuration for the $\Delta\Delta$ isomer and R one for the $\Lambda\Lambda$ isomer. All

the aet chelate rings take a distinct gauche form with the 'ob' conformation (δ conformation for Δ and λ one for Λ), which is in contrast to the 'lel' conformational aet rings observed in the linear-type and cage-type S-bridged polynuclear complexes. ¹⁻⁴) Besides these three formal chiralities, **1** possesses a novel chirality due to the helical structure of the three Rh-S-Hg-S-Rh chains; the $\Delta\Delta$ isomer adopts the left-handed helical configuration and the $\Lambda\Lambda$ isomer does the right-handed helical one. It is noted that no helical structure has been found in the linear-type and cage-type S-bridged polynuclear complexes, ¹⁻⁴) and furthermore the triple helical structure is extremely rare for the metal complexes, ⁸ although mono ^{9a,b}) and double helical structures ^{9c-j}) have been observed in several inorganic compounds.

Optical resolution of the complex molecule 1 was unsuccessful because of its sparing solubility in any solvents. The reaction of fac(S)-[Rh(aet)₃] (0.10 g) with $Hg(NO_3)_2 \cdot H_2O$ (0.20 g) in water gave a pale yellow complex 2 in 50 % yield, which is soluble in water.¹⁰⁾ The elemental and plasma emission spectral analytical data are consistent with the formulation [Rh(aet)₃]₂[Hg(NO₃)₂]₃(H₂O)₅ and the electronic absorption spectrum of 2 ¹⁰⁾ is quite similar to the qualitative absorption spectrum of 1. Moreover, in the ¹³C NMR spectrum 2 gives only two signals due to two kinds of methylene carbon atoms of the aet ligands.¹⁰⁾ Taking these facts into consideration, it is suggested that 2 takes the twisted-ellipsoid-type S-bridged pentanuclear structure with a D₃ symmetry as found in 1. This is supported by the fact that 2 was optically resolved with use of d-tartrate as the resolving agent.¹⁰⁾ Efforts to prepare single crystals of 2 are currently underway.

References

- T. Konno, S. Aizawa, K. Okamoto, and J. Hidaka, *Chem. Lett.*, 1985, 1017; K. Okamoto, S. Aizawa, T. Konno, H. Einaga, and J. Hidaka, *Bull. Chem. Soc. Jpn.*, 59, 3859 (1986); S. Miyanowaki, T. Konno, K. Okamoto, and J. Hidaka, *ibid.*, 61, 2987 (1988); T. Konno, S. Aizawa, and J. Hidaka, *ibid.*, 62, 585 (1989); T. Konno, S. Aizawa, K. Okamoto, and J. Hidaka, *ibid.*, 63, 792 (1990).
- 2) T. Konno, K. Okamoto, and J. Hidaka, *Chem. Lett.*, 1990, 1043; T. Konno, K. Okamoto, and J. Hidaka, *Inorg. Chem.*, 30, 2253 (1991); Y. Kageyama, T. Konno, K. Okamoto, and J. Hidaka, presented at the 41st Symposium on the Coordination Chemistry of Japan, Okayama, 1991, Abstract No. 1AP13; T. Konno, T. Nagashio, K. Okamoto, and J. Hidaka, *Inorg. Chem.*, 31, 1160 (1992).
- 3) T. Konno, K. Okamoto, and J. Hidaka, *Bull. Chem. Soc. Jpn.*, **63**, 3027 (1990); T. Konno, K. Okamoto, and J. Hidaka, *Inorg. Chem.*, **31**, 160 (1992).
- 4) D. H. Bush and D. C. Jicha, *Inorg. Chem.*, 1, 884 (1962); G. R. Brubaker and B. E. Douglas, *ibid.*, 6, 1562 (1967); R. E. DeSimone, T. Ontko, L. Wardman, and E. L. Blinn, *ibid.*, 14, 1313 (1975); E. L. Blinn,

- P. Butler, K. M. Chapman, and S. Harris, *Inorg. Chim. Acta*, 24, 139 (1977); M. J. Heeg, E. L. Blinn, and E. Deutsch, *Inorg. Chem.*, 24, 1118 (1985); D. W. Johnson and T. R. Brewer, *Inorg. Chim. Acta*, 154, 221 (1988).
- 5) Anal. Found: C, 8.69; H, 2.99; N, 4.98%. Calcd for C₁₂H₃₆N₆S₆Cl₆Rh₂Hg₃·8H₂O: C, 8.89; H, 3.23; N, 5.18%.
- 6) Crystal data for $[\{Rh(C_2H_6NS)_3\}_2(HgCl_2)_3]\cdot 8H_2O$ at 293 K: tetragonal, $I4_1/a$, a=15.083(1), c=37.043(4) Å, V=8427(1) Å³, Z=8, $D_c=2.56$ g cm⁻³, $D_m=2.59$ g cm⁻³, $\lambda(Mo K\alpha)=0.71069$ Å, $\mu=118.75$ cm⁻¹, R=0.0580, $R_w=0.0633$ for 2927 reflections. The structure was solved by the same procedures as described in previous papers (Ref. 2). Selected bond lengths (Å) and angles (deg) (averaged): Rh-S, 2.321(4); Rh-N, 2.108(13); Hg-S, 2.443(4); Hg-Cl, 2.648(5); S-Rh-S, 93.3(1); N-Rh-N, 90.3(5); Cl-Hg-Cl, 88.8(4); S-Hg-Cl, 101.6(2); S-Hg-S, 147.6(1); Rh-S-Rh, 112.9(2).
- 7) a) E. C. Constable, Coord. Chem. Rev., 62, 37 (1985); b) E. S. Gruff and S. A. Koch, J. Am. Chem. Soc., 112, 1245 (1990); c) E. Block, M. Brito, M. Gernon, D. McGowty, H. Kang, and J. Zubieta, Inorg. Chem., 29, 3172 (1990).
- J. Libman, Y. Tor, and A. Shanzer, J. Am. Chem. Soc., 109, 5880 (1987); A. F. Williams, C. Piguet, and
 G. Bernardinelli, Angew. Chem., Int. Ed. Engl., 30, 1490 (1991).
- a) C. Deuschel-Cornioley, H. Stoeckli-Evans, and A. von Zelewsky, J. Chem. Soc., Chem. Commun.,
 1990, 121; b) T. Kawamoto and Y. Kushi, Chem. Lett., 1992, 297; c) R. M. H. Banda, D. Craig, I. G. Dance, and M. Scudder, Polyhedron, 10, 41 (1991); d) E. C. Constable, J. M. Holmes, and P. R. Raithby,
 ibid., 10, 127 (1991); e) O. J. Gelling, F. van Bolhuis, and B. L. Feringa, J. Chem. Soc., Chem. Commun., 1991, 917; f) E. C. Constable, S. M. Elder, J. Healy, M. D. Ward, and D. A. Tocher, J. Am. Chem. Soc., 112, 4590 (1990); g) E. C. Constable, M. D. Ward, and D. A. Tocher, ibid., 112, 1256 (1990); h) U. Koert, M. M. Harding, and J. -M. Lehn, Nature, 346, 339 (1990); i) E. C. Constable, ibid.,
 346, 314 (1990); j) C. J. Cathey, E. C. Constable, M. J. Hannon, D. A. Tocher, and M. D. Ward, J. Chem. Soc., Chem. Commun., 1990, 621.
- 10) Anal. Found: C, 8.35; H, 2.53; N, 9.37; Rh, 12.42; Hg, 35.53%. Calcd for $C_{12}H_{36}N_{12}O_{18}S_6Rh_2Hg_3$ · $5H_2O$: C, 8.34; H, 2.69; N, 9.74; Rh, 11.92; Hg, 34.85%. Visible-UV spectrum, H_2O solvent [σ_{max} , 10^3 cm⁻¹ (log (ε / mol⁻¹dm³cm⁻¹))]: 29.0 (3.20 sh), 38.9 (4.46 sh), 44.4 (4.86 sh), 49.50 (5.07). sh denotes a shoulder. CD spectrum, H_2O solvent [σ_{max} , 10^3 cm⁻¹ ($\Delta\varepsilon$, mol⁻¹dm³cm⁻¹)]: 28.74 (-2.79), 32.90 (+3.94), 38.40 (-4.70), 43.63 (-10.02). ¹³C NMR in D_2O (500 MHz, ppm from DSS): 39.01 (-CH₂S) and 52.90 (-CH₂NH₂).